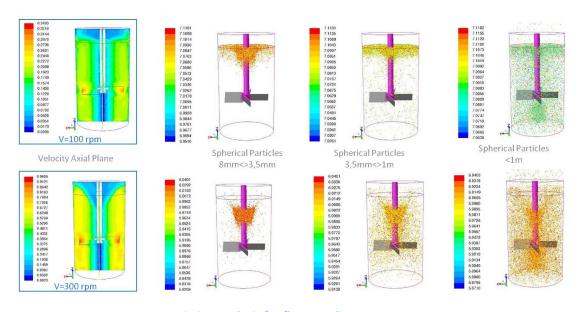
D2.2 Magnesium recycling routes optimization


With the information coming from the previous task the optimization of the recycling process for each material (scrap and scum) was developed. For all the options studied, casting and validation tests have been done and measurements made in order to evaluate the process efficiencies depending on the initial input materials.

• In the case of the scrap material: a fluxless procedure was defined obtaining minimum process efficiency higher than 80%. Furthermore, a spreadsheet was created in order to know how the different kinds of scrap could be introduced in the recycling furnace.

AM60 Mix rules	Data input from trials performed (fixed values) Percentage and kilogram that will enter to recycling furnace (required input data)										to			
Input Material	%Mg	%AI	%Zn	%Mn	%Fe	%Cu	%Ni	%Be	%Si	Others	Auto-Alloy Yield	Kg raw material/Tn AM60		
AVERAGE NoK Parts	93,400	6,050	0,110	0,319	0,0031	0,0006	0,0020	0.0005	0,039	0,076	50.0%	333		
AVERAGE Biscuits&Gates	93,400	6,195	0,092	0,248	0,0065	0,0006	0,0020	0,0005	0,046	0,009	0,0%	333		
AVERAGE Overflows	93,300	5,930	0,107	0,288	0,0015	0,0006	0,0020	0,0007	0,037	0,333	50,0%	333		
AMERICA NEW YEAR	455 544	40.07005	0.40045	0.50111	0.00510	0.004	0.0000	0.000000	0.004005	0.400007				
AVERAGE NoK Parts	155,511	10,07325					0,0033	0,0008325	0,064935		-	nternal		
AVERAGE Biscuits&Gates AVERAGE Overflows	155,345	9,87345	0 17916	0,47952	0,0025	0,001	0,0033	0.0011655	0.001005	0,554778				
TOTAL	310,856				0,00766		0,0067	0,0011998		0,554776		alculation	on	
	%Mq	%AI	%Zn	%Mn	%Fe	%Cu	%Ni	%Be	%Si	Others	Fe/Mn	D		
Auto-Alloy Composition	93.35000	5.99000			0.00230			0.00060	0.03800	0.20450	0,00758	1		e of auto-
Error	0,02400	-0.01000			-0.00170		0,00200	-0,00040	-0.04200	0,20450	-0.013	allo	y and e	rror respect
	O TO E TO O	0101000	0,000,000	0101000	0,000,00	01001.10		Ciposito	0,01200	0,20100	-01010	to s	tandar	d values
AM60 (error)	93,32600	6,00000	0,20000	0,38000	0,00400	0,00800	0,00100	0,00100	0,08000	0,00000	0,02100			
AM60 ASTM B93/93M ingot	halance	5,6-6,4	<0.2	0,26-0,5	<0,004	<0,008	<0.001	5-15ppm (0,0005-0,0015)	<0.08		0,021max	Yield	Kg /Tn AM60	
GAM Alloy AM60 ingot B	93,4	5,99	0,109	0,30	0,0023	0,0006	0.0020	0,0006	0.04	0,20450	0,008	100,0%	1000,00	
	Medium values error accepted			Final composition to be obtained and standard comparison							Yield and kg/Tn of AM60 expected			

AM60 mix rules Spreadsheet

• In the case of the scum material, the work was focused on the definition of a flux recycling process. The efficiency was measured and the value obtained was much lower than for scrap material. But as these results can be interesting from an economic point of view, Grupo Antolin will assess this process feasibility in the exploitation analysis.

Stirring analysis for flux recycling process